博客
关于我
动作识别0-03:mmaction2(SlowFast)-白话给你讲论文-翻译无死角(1)
阅读量:726 次
发布时间:2019-03-21

本文共 1158 字,大约阅读时间需要 3 分钟。

Sl owFast Networks for Video Recognition

本论文提出了一种新的基于时空分离的视频识别网络架构,称为 SlowFast Networks。本文将详细阐述该网络的设计思想、实现方式以及实验结果。对于动作识别问题,我们提出了一个结合了慢速路径和快速路径的双流架构,其中慢速路径负责捕获空间语义信息,快速路径则专注于时序动作特征。通过这种划分,我们能够在不同的时间维度上分别处理运动和空间信息,从而提升动作识别的效果。

3D卷积网络在视频识别任务中一直受到了广泛关注。然而,这类方法通常需要在时空维度上进行统一处理,这种做法可能无法充分利用视频的时空特性。视觉系统中,空间信息通常是缓慢变化的,而运动信息则往往以快速的时间频率出现。基于这一观点,我们提出了一个新的网络架构,即 SlowFast Networks。

在引言部分,我们讨论了传统的视频识别方法主要集中在时空卷积的统一处理上 ,但是这种方法可能无法有效利用视频的时空特性。我们提出,应该分别处理空间信息和时间信息,这种思路与生物视觉系统中的灰质细胞和黄色体细胞类似,其中灰质细胞对空间细节敏感但时间分辨率较低,而黄色体细胞则相反。

针对这一思想,我们设计了一个包含慢速路径和快速路径的双流架构。慢速路径输入低帧率的视频片段,主要负责捕获空间语义信息。相比之下,快速路径输入高帧率的视频片段,专注于捕获动作特征。尽管快速路径在通道数量上相对较少,但其计算复杂度却远低于传统的3D卷积网络,大约占整个网络的20%。这种轻量化设计使得快速路径能够高效地捕捉快速变化的运动信息。

在网络架构方面,我们采用了侧面连接的方式将慢速路径和快速路径的特征融合。这种设计不仅可以利用两者的优势,还能够有效减少计算量。此外,我们在每个卷积层中使用了特定的时态卷积核,确保不同路径在时空维度上的有效结合。

实验结果表明,SlowFast Networks在多个基准数据集(如Kinetics、Charades和AVA)上均能够取得较好的性能,动作分类精度显著优于传统的3D卷积网络。这些成果验证了我们的设计理念。

在相关工作部分,我们回顾了现有视频识别方法,包括基于光流的手工特征、双流架构以及3D卷积网络。我们指出了这些方法的局限性,并提出了 SlowFast Networks 的创新性。与传统方法相比, SlowFast Networks 的主要优势在于其能够更好地分别处理时空信息,避免了传统方法中在时空维度上的不平衡处理问题。

最终,通过实验验证和理论分析,我们证明了 SlowFast Networks 在视频动作识别任务中的有效性和优势。未来的工作将进一步探索如何利用这种架构进行更复杂的视频理解任务,如行为分析和高层次视觉理解。

转载地址:http://tvigz.baihongyu.com/

你可能感兴趣的文章
NIO蔚来 面试——IP地址你了解多少?
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NISP国家信息安全水平考试,收藏这一篇就够了
查看>>
NIS服务器的配置过程
查看>>
NIS认证管理域中的用户
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>